
DIFFERENTIAL MANIFOLDS HW 3

KELLER VANDEBOGERT

1. Exercise 1.14

Employing the summation convention, we have:

[u, v]i =
∂ui

∂xj
vj − ∂vi

∂xj
uj

So that:

[w, [u, v]]i =
∂wi

∂xk
[u, v]k − ∂2ui

∂xj∂xk
wkvj − ∂ui

∂xj
∂vj

∂xk
wk

+
∂2vi

∂xj∂xk
wkuj +

∂vi

∂xj
∂uj

∂xk
wk

=
∂wi

∂xk
[u, v]k − ∂2ui

∂xj∂xk
wkvj +

∂2vi

∂xj∂xk
wkuj

Taking cyclic permutations of {u, v, w}, we easily find:

(1.1) [v, [w, u]]i =
∂vi

∂xk
[w, u]k − ∂2wi

∂xj∂xk
vkuj +

∂2ui

∂xj∂xk
vkwj

(1.2) [u, [v, w]]i =
∂ui

∂xk
[v, w]k − ∂2vi

∂xj∂xk
ukwj +

∂2wi

∂xj∂xk
ukvj

From here it is simple to see that ∂wi

∂xk [u, v]k+ ∂vi

∂xk [w, u]k+ ∂ui

∂xk [v, w]k =

0. Likewise, comparing the second order terms in the above equations,

we see that these must all cancel out as well by renaming indices as

necessary. Hence, we obtain:
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[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0

As desired.

2. Exercise 1.23

First check that σ is closed:

dσ =
(−2x2 + y2 + z2

r5
dx+

−3xy

r5
dy +

−3zx

r5
dz

)
∧ dy ∧ dz

+
−3xy

r5
dx+

−2y2 + x2 + z2

r5
dy +

−3zy

r5
dz

)
∧ dz ∧ dx

+
−3xz

r5
dx+

−3yz

r5
dy +

−2z2 + x2 + y2

r5
dz

)
∧ dx ∧ dy

=
−2x2 + y2 + z2

r5
dx ∧ dy ∧ dz +

−2y2 + x2 + z2

r5
dy ∧ dz ∧ dx

+
−2z2 + x2 + y2

r5
dz ∧ dx ∧ dy

=
−2r2 + 2r2

r5
dx ∧ dy ∧ dz = 0

(2.1)

Following the hint, compute d(zω/r), where ω is given in Exercise

1.22:

d(zω/r) =
1

ρ2r3

(
x2zdx ∧ dy − y2zdy ∧ dx+ ρ2xdz ∧ dy + ρ2ydz ∧ dx

)
=

1

r3
(zdx ∧ dy + xdz ∧ dy + ydz ∧ dx) = σ

(2.2)

Hence we can guess our antiderivative to be zω/r. But this form is

singular all along the z axis, so we can split this into the cases for z < 0

and z > 0. When z > 0, note that since with ω := ρ−2α, α defined

obviously, then d(z/rω + ω) = σ. However,
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z/rω + ω =
z + r

r
ρ−2α =

ρ2

r(z − r)
ρ−2α =

1

r(z − r)
α := Ω−

Hence, this is no longer singular along the lower half space, since

z − r 6= 0 for negative z. For z > 0, merely subtract ω instead:

z/rω − ω =
z − r
r

ρ−2α =
ρ2

r(z + r)
ρ−2α =

1

r(z + r)
α := Ω+

And we see that z + r 6= 0 on the upper half space as well. Hence,

we see that our antiderivative is 1
r(z+r)

α along the upper half space and

1
r(z−r)α along the lower half space. Thus, we want to find what this

form would be as z → 0, ie, along the boundary of these two spaces.

Note that r → ρ as z → 0, and hence, tending to 0 from either the

upper or lower half space, we see:

1

r(z + r)
α→ 1

ρ2
α = ω

1

r(z − r)
α→ −1

ρ2
α = −ω

However, the upper and lower half spaces are both convex and hence

contractible and by Poincare’s Lemma both forms for the upper and

lower half space are exact since we have already proved they are closed.

So:

Ω+ + da = θ+

Ω− + db = θ−

For some exact 1-forms θ+ and θ−, where a, b are some smooth

functions. However, this means that on the xy-plane, Ω+ + da = Ω−+

db. Setting z = 0, we see that this implies that 2ω = d(a− b). But this
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means that ω is exact on R2\{0}, contradicting the result of exercise

1.22 of the previous homework (cf. HW2). Thus σ cannot possibly be

exact.

3. Exercise 2.3

Firstly, it is clear that Sii ≡ id. Also, Sji : Ui∗ → Uj∗ by the given

condition that Sjj ◦Sii ⊂ Sji. Denote by Yi∗ the image of Ui∗ under the

quotient of the given equivalence relation. Then, to see that these i∗

are bijections merely note that if (u, i) = (v, i) in Yi∗ , then Sii(u) = v.

But since Sii is the identity, we find v = u. Hence this is injective.

Surjectivity is clear: the preimage of (u, i) is just u.

Now, it is obvious that the domains of our charts are numerical

spaces by the condition given in the problem, hence this satisfies the

first condition for a manifold structure. The second condition also

holds as well: if (u, i) ∈ Y , then we have i∗(u) = (u, i), so the ranges

must cover Y .

Finally, we want to check that intersections are compatible. Suppose

that u ∈ i∗(Yi∗ ∩ Yj∗). Then, u = Sji(v) for some v ∈ Uj∗ . However,

this then implies that i∗(u) = (v, j), and taking the preimage, we see

that j−1∗ i∗(u) = v, and this is well defined since we’ve already shown

the quotient maps are bijections.

This is a diffeomorphism since this is clearly the same as finding the

image Sij(u) = v, and since each Sij is given to be a diffeomorphism,

the transition maps are also diffeomorphisms. Thus we have a unique

manifold structure on Y .

Conversely, suppose we have an atlas {a}a∈A, a : Ua → Xa. Then,

obviously the domains are numerical spaces for the Sba := b−1◦a : Ua →
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Ub since A is a chart, and each Sba is a diffeomorphism as a composition

of diffeomorphisms. The second condition also holds trivially by the

above, since the preimage of any equivalence class (u, a) is simply u ∈

Ua (since Ui∗ = Ua as defined above).

Finally, for the third condition, we already know that our charts of

the original atlas A are compatible and by the work of the first part,

b−1∗ a∗ = Sab. Since a−1 ◦ b must be a diffeomorphism by compatibility

of A, the transition maps b−1∗ a∗ are diffeomorphisms as well, and we

are done.


